de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Effects of Displayed Error Scaling in Compensatory Roll-Axis Tracking Tasks

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84644

Pool,  DM
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Breur, S., Pool, D., van Paassen, M., & Mulder, M. (2010). Effects of Displayed Error Scaling in Compensatory Roll-Axis Tracking Tasks. In AIAA Modeling and Simulation Technologies Conference 2010 (pp. 774-789). Red Hook, NY, USA: Curran.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-BEB6-9
Abstract
This paper describes an investigation into the effects of displayed error scaling on manual control behavior during compensatory roll-axis tracking. Previous experiments have indicated that for compensatory displays that, similar to an artificial horizon, present the roll tracking errors in rotational form, the deviations for typical quasi-random forcing function signals are comparatively small and difficult to perceive. This was found to lead to degraded tracking performance and lower crossover frequencies than would be expected. To investigate this, a roll-axis tracking experiment has been performed in which the scaling of the presented tracking errors was varied from 0.5 to 5 times the true tracking error. In addition, both double integrator dynamics and typical conventional roll dynamics of a small jet aircraft were considered in a mixed experimental design. The main hypothesis for this experiment was that increased scaling of the presented roll-axis tracking error would result in improved tracking performance and correlation of manual control inputs with the target forcing function signal. In addition, these effects were hypothesized to be more pronounced for the more difficult double integrator dynamics. For both controlled elements, both tracking performance and linearity of pilot control were indeed found to increase with increasing display gain, leveling of for the highest considered display gains. Further analysis of manual control behavior using McRuer et al.’s Precision Model revealed marked changes in the adopted control strategy due to changes in displayed error scaling, which were found to be highly similar for both controlled elements.