de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

libDAI: A Free and Open Source C++ Library for Discrete Approximate Inference in Graphical Models

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84090

Mooij,  JM
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Mooij, J. (2010). libDAI: A Free and Open Source C++ Library for Discrete Approximate Inference in Graphical Models. Journal of Machine Learning Research, 11, 2169-2173. Retrieved from http://www.jmlr.org/papers/volume11/mooij10a/mooij10a.pdf.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-BEAC-1
Zusammenfassung
This paper describes the software package libDAI, a free open source C++ library that provides implementations of various exact and approximate inference methods for graphical models with discrete-valued variables. libDAI supports directed graphical models (Bayesian networks) as well as undirected ones (Markov random fields and factor graphs). It offers various approximations of the partition sum, marginal probability distributions and maximum probability states. Parameter learning is also supported. A feature comparison with other open source software packages for approximate inference is given. libDAI is licensed under the GPL v2+ license and is available at http://www.libdai.org.