de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Alterations in choice behavior by manipulations of world model

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84011

Benson C, Kersten,  D
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Green, C., Benson C, Kersten, D., & Schrater, P. (2010). Alterations in choice behavior by manipulations of world model. Proceedings of the National Academy of Sciences of the Unites States of America, 107(37), 16401-16406. doi:10.1073/pnas.1001709107.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-BE44-B
Zusammenfassung
How to compute initially unknown reward values makes up one of the key problems in reinforcement learning theory, with two basic approaches being used. Model-free algorithms rely on the accumulation of substantial amounts of experience to compute the value of actions, whereas in model-based learning, the agent seeks to learn the generative process for outcomes fromwhich the value of actions can be predicted. Here we show that (i) “probability matching”— a consistent example of suboptimal choice behavior seen in humans —occurs in an optimal Bayesian model-based learner using a max decision rule that is initialized with ecologically plausible, but incorrect beliefs about the generative process for outcomes and (ii) human behavior can be strongly and predictably altered by the presence of cues suggestive of various generative processes, despite statistically identical outcome generation. These results suggest human decision making is rational and model based and not consistent with model-free learning.