de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Poster

Online 3D simulation of extracellular recordings with morphologically reconstructed neurons

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84098

Meier P, Natora M, Hagen E, Pettersen KH, Linden H, Einevoll GT, Munk,  MH
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Franke, F., Meier P, Natora M, Hagen E, Pettersen KH, Linden H, Einevoll GT, Munk, M., & Obermayer, K. (2010). Online 3D simulation of extracellular recordings with morphologically reconstructed neurons. Poster presented at Bernstein Conference on Computational Neuroscience (BCCN 2010), Berlin, Germany.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-BE04-C
Zusammenfassung
Extracellular recordings are a key tool to study the activity of neurons in vivo. Especially in the case of experiments with behaving animals, however, the tedious procedure of electrode placement can take a considerable amount of expensive and restricted experimental time. Furthermore, due to tissue drifts and other sources of variability in the recording setup, the position of the electrodes with respect to the neurons under study can change, causing low recording quality. Here, we developed a system online simulation of extracellular recordings that allows for feedback from electrode positioning systems. The simulator is based on realistically reconstructed 3D neurons. The shape of the extracellular waveform is estimated from their morphology for every point on a 3D grid around the neurons. If a recording device is close to a neuron, the corresponding waveform for its spikes is calculated from that grid by interpolating the waveforms of the adjacent grid positions. This way we can simulate a realistic recording environment in which an unconstrained movement of electrodes and neurons and an interaction with a positioning system and online spike sorter is possible.