de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Learning Probabilistic Discriminative Models of Grasp Affordances under Limited Supervision

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83905

Erkan,  AN
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84027

Kroemer,  O
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83782

Detry R, Altun,  Y
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84139

Piater,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84135

Peters,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Erkan, A., Kroemer, O., Detry R, Altun, Y., Piater, J., & Peters, J. (2010). Learning Probabilistic Discriminative Models of Grasp Affordances under Limited Supervision. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010) (pp. 1586-1591). Piscataway, NJ, USA: IEEE.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-BDEE-6
Abstract
This paper addresses the problem of learning and efficiently representing discriminative probabilistic models of object-specific grasp affordances particularly when the number of labeled grasps is extremely limited. The proposed method does not require an explicit 3D model but rather learns an implicit manifold on which it defines a probability distribution over grasp affordances. We obtain hypothetical grasp configurations from visual descriptors that are associated with the contours of an object. While these hypothetical configurations are abundant, labeled configurations are very scarce as these are acquired via time-costly experiments carried out by the robot. Kernel logistic regression (KLR) via joint kernel maps is trained to map the hypothesis space of grasps into continuous class-conditional probability values indicating their achievability. We propose a soft-supervised extension of KLR and a framework to combine the merits of semi-supervised and active learning approaches to tackle the scarcity of labeled grasps. Experimental evaluation shows that combining active and semi-supervised learning is favorable in the existence of an oracle. Furthermore, semi-supervised learning outperforms supervised learning, particularly when the labeled data is very limited.