Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Closing the sensorimotor loop: Haptic feedback facilitates decoding of arm movement imagery

MPG-Autoren
/persons/resource/persons84135

Peters,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83968

Hill,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84193

Schölkopf,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83948

Grosse-Wentrup,  M
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Gomez Rodriguez, M., Peters, J., Hill, J., Schölkopf, B., Gharabaghi, A., & Grosse-Wentrup, M. (2010). Closing the sensorimotor loop: Haptic feedback facilitates decoding of arm movement imagery. In IEEE International Conference on Systems, Man and Cybernetics (SMC 2010) (pp. 121-126). Piscataway, NJ, USA: IEEE.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-BDEA-E
Zusammenfassung
Brain-Computer Interfaces (BCIs) in combination with robot-assisted physical therapy may become a valuable tool for neurorehabilitation of patients with
severe hemiparetic syndromes due to cerebrovascular brain damage (stroke) and other neurological conditions. A key aspect of this approach is reestablishing
the disrupted sensorimotor feedback loop, i.e., determining the intended movement using a BCI and helping a human with impaired motor function to move
the arm using a robot. It has not been studied yet, however, how artificially closing the sensorimotor feedback loop affects the BCI decoding performance.
In this article, we investigate this issue in six healthy subjects, and present evidence that haptic feedback facilitates the decoding of arm movement
intention. The results provide evidence of the feasibility of future rehabilitative efforts combining robot-assisted physical therapy with BCIs.