Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Learning Table Tennis with a Mixture of Motor Primitives

MPG-Autoren
/persons/resource/persons84097

Mülling,  K
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84021

Kober,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84135

Peters,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Mülling, K., Kober, J., & Peters, J. (2010). Learning Table Tennis with a Mixture of Motor Primitives. In 10th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2010) (pp. 411-416). Piscataway, NJ, USA: IEEE.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-BD32-C
Zusammenfassung
Table tennis is a sufficiently complex motor task for studying complete skill learning systems. It consists of several elementary motions and requires fast movements, accurate
control, and online adaptation. To represent the elementary
movements needed for robot table tennis, we rely on dynamic
systems motor primitives (DMP). While such DMPs have been
successfully used for learning a variety of simple motor tasks,
they only represent single elementary actions. In order to select
and generalize among different striking movements, we present
a new approach, called Mixture of Motor Primitives that uses
a gating network to activate appropriate motor primitives. The
resulting policy enables us to select among the appropriate
motor primitives as well as to generalize between them. In
order to obtain a fully learned robot table tennis setup, we
also address the problem of predicting the necessary context
information, i.e., the hitting point in time and space where
we want to hit the ball. We show that the resulting setup
was capable of playing rudimentary table tennis using an
anthropomorphic robot arm.