English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation

MPS-Authors
/persons/resource/persons84257

Thielscher,  A
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84119

Opitz,  A
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84318

Windhoff,  M
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Thielscher, A., Opitz, A., & Windhoff, M. (2011). Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation. NeuroImage, 54(1), 234-243. doi:10.1016/j.neuroimage.2010.07.061.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-BCCA-D
Abstract
The spatial extent of the effects of transcranial magnetic stimulation (TMS) on neural tissue is only coarsely understood. One key problem is the realistic calculation of the electric field induced in the brain, which proves difficult due to the complex gyral folding pattern that results in an inhomogeneous conductivity distribution within the skull. We used the finite element method (FEM) together with a high-resolution volume mesh of the human head to better characterize the field induced in cortical gray matter (GM). The volume mesh was constructed from T1-weighted structural magnetic resonance images to allow for an anatomically accurate modeling of the gyrification pattern. Five tissue types were taken into account, corresponding to skin, skull, cerebrospinal fluid (CSF) including the ventricles as well as cortical gray and white matter. We characterized the effect of the current direction on the electric field distribution in GM. Importantly, the field strength in GM was increased by up to 51 when the induced currents were perpendicular to the local gyrus orientation. This effect was mainly restricted to the gyral crowns and lips, but did not extend into the sulcal walls. As a result, the focality of the fields induced in GM was increased. This enhancement effect might in part underlie the dependency of stimulation thresholds on coil orientation, as commonly observed in TMS motor cortex studies. In contrast to the clear-cut effects of the gyrification pattern on the induced field strength, current directions were predominantly influenced by the CSF-skull boundary.