English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Working memory maintenance of grasp-target information in the human posterior parietal cortex

MPS-Authors
/persons/resource/persons83794

Bannert,  M
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84990

Franz,  VH
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Fiehler, K., Bannert, M., Bischoff, M., Blecker, C., Stark, R., Vaitl, D., et al. (2011). Working memory maintenance of grasp-target information in the human posterior parietal cortex. NeuroImage, 54(3), 2401-2411. doi:10.1016/j.neuroimage.2010.09.080.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-BC9C-6
Abstract
Event-related functional magnetic resonance imaging was applied to identify cortical areas involved in maintaining target information in working memory used for an upcoming grasping action. Participants had to grasp with their thumb and index finger of the dominant right hand three-dimensional objects of different size and orientation. Reaching-to-grasp movements were performed without visual feedback either immediately after object presentation or after a variable delay of 2–12 s. The right inferior parietal cortex demonstrated sustained neural activity throughout the delay, which overlapped with activity observed during encoding of the grasp target. Immediate and delayed grasping activated similar motor-related brain areas and showed no differential activity. The results suggest that the right inferior parietal cortex plays an important functional role in working memory maintenance of grasp-related information. Moreover, our findings confirm the assumption that brain areas engaged in maintaining information are also involved in encoding the same information, and thus extend previous findings on working memory function of the posterior parietal cortex in saccadic behavior to reach-to-grasp movements.