de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Heart Rate Variability Dynamics for the Prognosis of Cardiovascular Risk

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84847

Ramirez-Villegas,  JF
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ramirez-Villegas, J., Lam-Espinosa E, Ramirez-Moreno DF, Calvo-Echeverry, P., & Agredo-Rodriguez, W. (2011). Heart Rate Variability Dynamics for the Prognosis of Cardiovascular Risk. PLoS ONE, 6(2), 1-15. doi:10.1371/journal.pone.0017060.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-BC8A-0
Zusammenfassung
Statistical, spectral, multi-resolution and non-linear methods were applied to heart rate variability (HRV) series linked with classification schemes for the prognosis of cardiovascular risk. A total of 90 HRV records were analyzed: 45 from healthy subjects and 45 from cardiovascular risk patients. A total of 52 features from all the analysis methods were evaluated using standard two-sample Kolmogorov-Smirnov test (KS-test). The results of the statistical procedure provided input to multi-layer perceptron (MLP) neural networks, radial basis function (RBF) neural networks and support vector machines (SVM) for data classification. These schemes showed high performances with both training and test sets and many combinations of features (with a maximum accuracy of 96.67). Additionally, there was a strong consideration for breathing frequency as a relevant feature in the HRV analysis.