de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Batch-Mode Active-Learning Methods for the Interactive Classification of Remote Sensing Images

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84133

Persello,  C
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Demir, B., Persello, C., & Bruzzone, L. (2011). Batch-Mode Active-Learning Methods for the Interactive Classification of Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing, 49(3), 1014-1031. doi:10.1109/TGRS.2010.2072929.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-BC50-0
Zusammenfassung
This paper investigates different batch-mode active-learning (AL) techniques for the classification of remote sensing (RS) images with support vector machines. This is done by generalizing to multiclass problem techniques defined for binary classifiers. The investigated techniques exploit different query functions, which are based on the evaluation of two criteria: uncertainty and diversity. The uncertainty criterion is associated to the confidence of the supervised algorithm in correctly classifying the considered sample, while the diversity criterion aims at selecting a set of unlabeled samples that are as more diverse (distant one another) as possible, thus reducing the redundancy among the selected samples. The combination of the two criteria results in the selection of the potentially most informative set of samples at each iteration of the AL process. Moreover, we propose a novel query function that is based on a kernel-clustering technique for assessing the diversity of samples and a new strategy for selecting the most informative representative sample from each cluster. The investigated and proposed techniques are theoretically and experimentally compared with state-of-the-art methods adopted for RS applications. This is accomplished by considering very high resolution multispectral and hyperspectral images. By this comparison, we observed that the proposed method resulted in better accuracy with respect to other investigated and state-of-the art methods on both the considered data sets. Furthermore, we derived some guidelines on the design of AL systems for the classification of different types of RS images.