de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Removing noise from astronomical images using a pixel-specific noise model

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83841

Burger,  HC
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84193

Schölkopf,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83954

Harmeling,  S
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Burger, H., Schölkopf, B., & Harmeling, S. (2011). Removing noise from astronomical images using a pixel-specific noise model. In IEEE International Conference on Computational Photography (ICCP 2011) (pp. 1-8). Piscataway, NJ, USA: IEEE.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-BC42-0
Zusammenfassung
For digital photographs of astronomical objects, where exposure times are usually long and ISO settings high, the so-called dark-current is a significant source of noise. Dark-current refers to thermally generated electrons and is therefore present even in the absence of light. This paper presents a novel approach for denoising astronomical images that have been corrupted by dark-current noise. Our method relies on a probabilistic description of the dark-current of each pixel of a given camera. The noise model is then combined with an image prior which is adapted to astronomical images. In a laboratory environment, we use a black and white CCD camera containing a cooling unit and show that our method is superior to existing methods in terms of root mean squared error. Furthermore, we show that our method is practically relevant by providing visually more appealing results on astronomical photographs taken with a single lens reflex CMOS camera.