Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Meeting Abstract

Human Brain Imaging at 9.4 Tesla Using a Combination of Traveling Wave Excitation with a 15-Channel Receive-Only Array

MPG-Autoren
/persons/resource/persons83973

Hoffmann,  JO
Former Department MRZ, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84213

Shajan,  G
Former Department MRZ, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84145

Pohmann,  R
Former Department MRZ, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hoffmann, J., Shajan, G., & Pohmann, R. (2011). Human Brain Imaging at 9.4 Tesla Using a Combination of Traveling Wave Excitation with a 15-Channel Receive-Only Array. In 19th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM 2011).


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-BC16-3
Zusammenfassung
Traveling wave imaging using a Tx/Rx patch antenna has the potential to provide a more homogeneous B1+ field over a large field-of-view compared to circularly polarized volume coils. However, the method suffers from poor sensitivity which prevents the application to routine imaging. Therefore, we combined a patch antenna for transmission with a 15-channel receive-only array inside a narrow head gradient for human brain imaging at 9.4 Tesla. The setup can provide spin excitation covering the whole brain for low flip angle applications; high SNR and simple usage. However, anticipated advantages were spoiled by B1+ artifacts in our initial results.