de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Haptic Teleoperation of Multiple Unmanned Aerial Vehicles over the Internet

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83915

Franchi,  A
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84174

Robuffo Giordano,  P
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84227

Son,  HI
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Lee, D., Franchi, A., Robuffo Giordano, P., Son, H., & Bülthoff, H. (2011). Haptic Teleoperation of Multiple Unmanned Aerial Vehicles over the Internet. In IEEE International Conference on Robotics and Automation (ICRA 2011) (pp. 1341-1347). Piscataway, NJ, USA: IEEE.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-BBCE-D
Abstract
We propose a novel haptic teleoperation control framework for multiple unmanned aerial vehicles (UAVs) over the Internet, consisting of the three control layers: 1) UAV control layer, where each UAV is abstracted by, and is controlled to follow the trajectory of, its own kinematic virtual point (VP); 2) VP control layer, which modulates each VP's motion according to the teleoperation commands and local artificial potentials (for inter-VP/VP-obstacle collision avoidance and inter-VP connectivity preservation); and 3) teleoperation layer, through which a remote human user can command all (or some) of the VPs' velocity while haptically perceiving the state of all (or some) of the UAVs over the Internet. Master-passivity/slave-stability and some asymptotic performance measures are proved. Semi-experiment results are presented to validate the theory.