de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Finding dependencies between frequencies with the kernel cross-spectral density

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons75278

Besserve,  M
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons75626

Janzing,  D
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84063

Logothetis,  NK
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84193

Schölkopf,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Besserve, M., Janzing, D., Logothetis, N., & Schölkopf, B. (2011). Finding dependencies between frequencies with the kernel cross-spectral density. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2011) (pp. 2080-2083). Piscataway, NJ, USA: IEEE.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-BBCA-6
Abstract
Cross-spectral density (CSD), is widely used to find linear dependency between two real or complex valued time series. We define a non-linear extension of this measure by mapping the time series into two Reproducing Kernel Hilbert Spaces. The dependency is quantified by the Hilbert Schmidt norm of a cross-spectral density operator between these two spaces. We prove that, by choosing a characteristic kernel for the mapping, this quantity detects any pairwise dependency between the time series. Then we provide a fast estimator for the Hilbert-Schmidt norm based on the Fast Fourier Trans form. We demonstrate the interest of this approach to quantify non-linear dependencies between frequency bands of simulated signals and intra-cortical neural recordings.