de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Finding dependencies between frequencies with the kernel cross-spectral density

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons75278

Besserve,  M
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons75626

Janzing,  D
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84063

Logothetis,  NK
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84193

Schölkopf,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Besserve, M., Janzing, D., Logothetis, N., & Schölkopf, B. (2011). Finding dependencies between frequencies with the kernel cross-spectral density. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2011) (pp. 2080-2083). Piscataway, NJ, USA: IEEE.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-BBCA-6
Zusammenfassung
Cross-spectral density (CSD), is widely used to find linear dependency between two real or complex valued time series. We define a non-linear extension of this measure by mapping the time series into two Reproducing Kernel Hilbert Spaces. The dependency is quantified by the Hilbert Schmidt norm of a cross-spectral density operator between these two spaces. We prove that, by choosing a characteristic kernel for the mapping, this quantity detects any pairwise dependency between the time series. Then we provide a fast estimator for the Hilbert-Schmidt norm based on the Fast Fourier Trans form. We demonstrate the interest of this approach to quantify non-linear dependencies between frequency bands of simulated signals and intra-cortical neural recordings.