de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

A Passivity-Based Decentralized Approach for the Bilateral Teleoperation of a Group of UAVs with Switching Topology

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83915

Franchi,  A
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84174

Robuffo Giordano,  P
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84227

Secchi C, Son,  HI
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Franchi, A., Robuffo Giordano, P., Secchi C, Son, H., & Bülthoff, H. (2011). A Passivity-Based Decentralized Approach for the Bilateral Teleoperation of a Group of UAVs with Switching Topology. In IEEE International Conference on Robotics and Automation (ICRA 2011) (pp. 898-905). Piscataway, NJ, USA: IEEE.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-BBC0-9
Abstract
In this paper, a novel distributed control strategy for teleoperating a fleet of Unmanned Aerial Vehicles (UAVs) is proposed. Using passivity based techniques, we allow the behavior of the UAVs to be as flexible as possible with arbitrary split and join decisions while guaranteeing stability of the system. Furthermore, the overall teleoperation system is also made passive and, therefore, characterized by a stable behavior both in free motion and when interacting with unknown passive obstacles. The performance of the system is validated through semi-experiments.