de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Pedestrian Detectability: Predicting Human Perception Performance with Machine Vision

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83902

Engel,  D
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83871

Curio,  C
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Engel, D., & Curio, C. (2011). Pedestrian Detectability: Predicting Human Perception Performance with Machine Vision. In IEEE Intelligent Vehicles Symposium (IV 2011) (pp. 429-435). Piscataway, NJ, USA: IEEE.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-BB7E-3
Abstract
How likely is it that a driver notices a person standing on the side of the road? In this paper we introduce the concept of pedestrian detectability. It is a measure of how probable it is that a human observer perceives pedestrians in an image. We acquire a dataset of pedestrians with their associated detectabilities in a rapid detection experiment using images of street scenes. On this dataset we learn a regression function that allows us to predict human detectabilities from an optimized set of image and contextual features. We exploit this function to infer the optimal focus of attention for pedestrian detection. With this combination of human perception and machine vision we propose a method we deem useful for the optimization of Human-Machine-Interfaces in driver assistance systems.