de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Movement extraction by detecting dynamics switches and repetitions

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83858

Chiappa,  S
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84135

Peters,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Chiappa, S., & Peters, J. (2011). Movement extraction by detecting dynamics switches and repetitions. Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010, 388-396.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-BB78-F
Zusammenfassung
Many time-series such as human movement data consist of a sequence of basic actions, e.g., forehands and backhands in tennis. Automatically extracting and characterizing such actions is an important problem for a variety of different applications. In this paper, we present a probabilistic segmentation approach in which an observed time-series is modeled as a concatenation of segments corresponding to different basic actions. Each segment is generated through a noisy transformation of one of a few hidden trajectories representing different types of movement, with possible time re-scaling. We analyze three different approximation methods for dealing with model intractability, and demonstrate how the proposed approach can successfully segment table tennis movements recorded using a robot arm as haptic input device.