de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Own-species bias in the representations of monkey and human face categories in the primate temporal lobe

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84221

Sigala,  R
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84063

Logothetis,  NK
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84154

Rainer,  G
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Sigala, R., Logothetis, N., & Rainer, G. (2011). Own-species bias in the representations of monkey and human face categories in the primate temporal lobe. Journal of Neurophysiology, 105(6), 2740-2752. doi:10.​1152/​jn.​00882.​2010.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-BB62-0
Abstract
Face categorization is fundamental for social interactions of primates and is crucial for determining conspecific groups and mate choice. Current evidence suggests that faces are processed by a set of well-defined brain areas. What is the fine structure of this representation, and how is it affected by visual experience? Here, we investigated the neural representations of human and monkey face categories using realistic three-dimensional morphed faces that spanned the continuum between the two species. We found an “own-species” bias in the categorical representation of human and monkey faces in the monkey inferior temporal cortex at the level of single neurons as well as in the population response analyzed using a pattern classifier. For monkey and human subjects, we also found consistent psychophysical evidence indicative of an own-species bias in face perception. For both behavioural and neural data, the species boundary was shifted away from the center of the morph continuum, for each species toward their own face category. This shift may reflect visual expertise for members of one's own species and be a signature of greater brain resources assigned to the processing of privileged categories. Such boundary shifts may thus serve as sensitive and robust indicators of encoding strength for categories of interest.