日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

会議論文

Towards Brain-Robot Interfaces in Stroke Rehabilitation

MPS-Authors
/persons/resource/persons83948

Grosse-Wentrup,  M
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons83968

Hill,  J
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons84193

Schölkopf,  B
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons84135

Peters,  J
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Grosse-Wentrup, M., Hill, J., Gharabaghi, A., Schölkopf, B., & Peters, J. (2011). Towards Brain-Robot Interfaces in Stroke Rehabilitation. In 12th International Conference on Rehabilitation Robotics (ICORR 2011). Piscataway, NJ, USA: IEEE.


引用: https://hdl.handle.net/11858/00-001M-0000-0013-BB34-7
要旨
A neurorehabilitation approach that combines robot-assisted active physical therapy and Brain-Computer Interfaces (BCIs) may provide an additional mileage with respect to traditional rehabilitation methods for patients with severe motor impairment due to cerebrovascular brain damage (e.g., stroke) and other neurological conditions. In this paper, we describe the design and modes of operation of a robot-based rehabilitation framework that enables artificial support of the sensorimotor feedback loop. The aim is to increase cortical plasticity by means of Hebbian-type learning rules. A BCI-based shared-control strategy is used to drive a Barret WAM 7-degree-of-freedom arm that guides a subject's arm. Experimental validation of our setup is carried out both with healthy subjects and stroke patients. We review the empirical results which we have obtained to date, and argue that they support the feasibility of future rehabilitative treatments employing this novel approach.