de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Testing whether linear equations are causal: A free probability theory approach

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84333

Zscheischler,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons75626

Janzing,  D
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84328

Zhang,  K
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zscheischler, J., Janzing, D., & Zhang, K. (2011). Testing whether linear equations are causal: A free probability theory approach. In 27th Conference on Uncertainty in Artificial Intelligence (UAI 2011) (pp. 839-847). Corvallis, OR, USA: AUAI Press.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-BB32-B
Zusammenfassung
We propose a method that infers whether linear relations between two high-dimensional variables X and Y are due to a causal influence from X to Y or from Y to X. The earlier proposed so-called Trace Method is extended to the regime where the dimension of the observed variables exceeds the sample size. Based on previous work, we postulate conditions that characterize a causal relation between X and Y . Moreover, we describe a statistical test and argue that both causal directions are typically rejected if there is a common cause. A full theoretical analysis is presented for the deterministic case but our approach seems to be valid for the noisy case, too, for which we additionally present an approach based on a sparsity constraint. The discussed method yields promising results for both simulated and real world data.