de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Approximation Bounds for Inference using Cooperative Cut

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83994

Jegelka,  S
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83814

Bilmes,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Jegelka, S., & Bilmes, J. (2011). Approximation Bounds for Inference using Cooperative Cut. In 28th International Conference on Machine Learning (ICML 2011) (pp. 577-584). Madison, WI, USA: International Machine Learning Society.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-BB16-9
Abstract
We analyze a family of probability distributions that are characterized by an embedded combinatorial structure. This family includes models having arbitrary treewidth and arbitrary sized factors. Unlike general models with such freedom, where the “most probable explanation” (MPE) problem is inapproximable, the combinatorial structure within our model, in particular the indirect use of submodularity, leads to several MPE algorithms that all have approximation guarantees.