de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Reinforcement Learning to adjust Robot Movements to New Situations

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84021

Kober,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84135

Peters,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Kober, J., Oztop, E., & Peters, J. (2011). Reinforcement Learning to adjust Robot Movements to New Situations. Robotics: Science and Systems VI, 33-40.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-BA64-3
Abstract
Many complex robot motor skills can be represented using elementary movements, and there exist efficient techniques for learning parametrized motor plans using demonstrations and self-improvement. However, in many cases, the robot currently needs to learn a new elementary movement even if a parametrized motor plan exists that covers a similar, related situation. Clearly, a method is needed that modulates the elementary movement through the meta-parameters of its representation. In this paper, we show how to learn such mappings from circumstances to meta-parameters using reinforcement learning.We introduce an appropriate reinforcement learning algorithm based on a kernelized version of the reward-weighted regression. We compare this algorithm to several previous methods on a toy example and show that it performs well in comparison to standard algorithms. Subsequently, we show two robot applications of the presented setup; i.e., the generalization of throwing movements in darts, and of hitting movements in table tennis. We show that both tasks can be learned successfully using simulated and real robots.