Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Learning inverse kinematics with structured prediction

MPG-Autoren
/persons/resource/persons84108

Nguyen-Tuong,  D
Dept. Empirical Inference, Max Planck Institute for Intelligent System, Max Planck Society;

/persons/resource/persons84193

Schölkopf,  B
Dept. Empirical Inference, Max Planck Institute for Intelligent System, Max Planck Society;

/persons/resource/persons84135

Peters,  J
Dept. Empirical Inference, Max Planck Institute for Intelligent System, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bocsi, B., Nguyen-Tuong, D., Csato, L., Schölkopf, B., & Peters, J. (2011). Learning inverse kinematics with structured prediction. In N. Amato (Ed.), IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2011) (pp. 698-703). Piscataway, NJ, USA: IEEE.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-BA52-B
Zusammenfassung
Learning inverse kinematics of robots with redundant degrees of freedom (DoF) is a difficult problem in robot learning. The difficulty lies in the non-uniqueness of the inverse kinematics function. Existing methods tackle non-uniqueness by segmenting the configuration space and building a global solution from local experts. The usage of local experts implies the definition of an oracle, which governs the global consistency of the local models; the definition of this oracle is difficult. We propose an algorithm suitable to learn the inverse kinematics function in a single global model despite its multivalued nature. Inverse kinematics is approximated from examples using structured output learning methods. Unlike most of the existing methods, which estimate inverse kinematics on velocity level, we address the learning of the direct function on position level. This problem is a significantly harder. To support the proposed method, we conducted real world experiments on a tracking control task and tested our algorithms on these models.