Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Learning anticipation policies for robot table tennis

MPG-Autoren
/persons/resource/persons84300

Wang,  Z
Dept. Empirical Inference, Max Planck Institute for Intelligent System, Max Planck Society;

/persons/resource/persons84097

Mülling,  K
Dept. Empirical Inference, Max Planck Institute for Intelligent System, Max Planck Society;

/persons/resource/persons84193

Schölkopf,  B
Dept. Empirical Inference, Max Planck Institute for Intelligent System, Max Planck Society;

/persons/resource/persons84135

Peters,  J
Dept. Empirical Inference, Max Planck Institute for Intelligent System, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Wang, Z., Lampert, C., Mülling, K., Schölkopf, B., & Peters, J. (2011). Learning anticipation policies for robot table tennis. In N. Amato (Ed.), IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2011) (pp. 332-337). Piscataway, NJ, USA: IEEE.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-BA4E-6
Zusammenfassung
Playing table tennis is a difficult task for robots, especially due to their limitations of acceleration. A key bottleneck is the amount of time needed to reach the desired hitting position and velocity of the racket for returning the incoming ball. Here, it often does not suffice to simply extrapolate the ball's trajectory after the opponent returns it but more information is needed. Humans are able to predict the ball's trajectory based on the opponent's moves and, thus, have a considerable advantage. Hence, we propose to incorporate an anticipation system into robot table tennis players, which enables the robot to react earlier while the opponent is performing the striking movement. Based on visual observation of the opponent's racket movement, the robot can predict the aim of the opponent and adjust its movement generation accordingly. The policies for deciding how and when to react are obtained by reinforcement learning. We conduct experiments with an existing robot player to show that the learned reaction policy can significantly improve the performance of the overall system.