de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The Role of Stereo Vision in Visual-Vestibular Integration

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83842

Butler,  JS
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84378

Campos,  JL
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84978

Smith,  ST
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Butler, J., Campos, J., Bülthoff, H., & Smith, S. (2011). The Role of Stereo Vision in Visual-Vestibular Integration. Seeing and Perceiving, 24(5), 453-470. doi:10.1163/187847511X588070.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-BA32-2
Zusammenfassung
Self-motion through an environment stimulates several sensory systems, including the visual system and the vestibular system. Recent work in heading estimation has demonstrated that visual and vestibular cues are typically integrated in a statistically optimal manner, consistent with Maximum Likelihood Estimation predictions. However, there has been some indication that cue integration may be affected by characteristics of the visual stimulus. Therefore, the current experiment evaluated whether presenting optic flow stimuli stereoscopically, or presenting both eyes with the same image (binocularly) affects combined visual-vestibular heading estimates. Participants performed a two-interval forced-choice task in which they were asked which of two presented movements was more rightward. They were presented with either visual cues alone, vestibular cues alone or both cues combined. Measures of reliability were obtained for both binocular and stereoscopic conditions. Group level analyses demonstrated that when stereoscopic information was available there was clear evidence of optimal integration, yet when only binocular information was available weaker evidence of cue integration was observed. Exploratory individual analyses demonstrated that for the stereoscopic condition 90 of participants exhibited optimal integration, whereas for the binocular condition only 60 of participants exhibited results consistent with optimal integration. Overall, these findings suggest that stereo vision may be important for self-motion perception, particularly under combined visual-vestibular conditions.