de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Vortrag

Voice cells in the primate temporal lobe

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84132

Perrodin,  C
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group Physiology of Sensory Integration, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group Physiology of Sensory Integration, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84006

Kayser,  C
Research Group Physiology of Sensory Integration, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group Physiology of Sensory Integration, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84063

Logothetis,  NK
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84136

Petkov,  CI
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Perrodin, C., Kayser, C., Logothetis, N., & Petkov, C. (2011). Voice cells in the primate temporal lobe. Talk presented at 12th Conference of Junior Neuroscientists of Tübingen (NeNA 2011). Heiligkreuztal, Germany.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-BA0C-9
Zusammenfassung
Communication signals are important for social interactions and survival and are thought to receive specialized processing in the visual and auditory systems. Whereas the neural processing of faces by face clusters and face cells has been repeatedly studied, less is known about the neural representation of voice content. Recent functional magnetic resonance imaging (fMRI) studies have localized voice-preferring regions in the primate temporal lobe, but the hemodynamic response cannot directly assess neurophysiological properties. We investigated the responses of neurons in an fMRI-identified voice cluster in awake monkeys, and here we provide the first systematic evidence for voice cells. "Voice cells" were identified, in analogy to "face cells", as neurons responding at least 2-fold stronger to conspecific voices than to "nonvoice" sounds or heterospecific voices. Importantly, whereas face clusters are thought to contain high proportions of face cells responding broadly to many faces, we found that voice clusters contain moderate proportions of voice cells. Furthermore, individual voice cells exhibit high stimulus selectivity. The results reveal the neurophysiological bases for fMRIdefined voice clusters in the primate brain and highlight potential differences in how the auditory and visual systems generate selective representations of communication signals.