Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONEN
  Dieser Datensatz wurde verworfen!FreigabegeschichteDetailsÜbersicht

Verworfen

Meeting Abstract

Thermotaxis in the marine annelid Platynereis dumerilii

MPG-Autoren
/persons/resource/persons84766

Veraszto,  C
Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons85269

Jekely,  G
Max Planck Institute for Developmental Biology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Veraszto, C., & Jekely, G. (2011). Thermotaxis in the marine annelid Platynereis dumerilii. In 12th Conference of Junior Neuroscientists of Tübingen (NeNA 2011) (pp. 18).


Zusammenfassung
In this project we are studying the thermotactic behavior of a newly emerged model animal
and the underlying mechanism, which is still not fully understood in marine environments.
The environmentally-directed swimming behaviors of planktonic larvae provide a simple, yet
evolutionary conserved system with which we could explore thermosensation in marine animals.
We aim to elucidate the molecular basis of thermotaxis in several planktonic larval
stages, identify and localize related TRP proteins and neurons in the structure of the neuronal
network. We measured the survival rate of the larvae on different temperatures, as a basis
of their ecological behavior. With behavioral assays we observed larval responses to different
temperatures that are valid in marine environments. We searched for TRP channels in our
transcriptome database and using molecular biological tools, we identified TRP channels and
localized them with in situ hybridization techniques. We established in vivo Ca-imaging with
Genetically Encoded Fluorescent Proteins to visualize intracellular signaling activity.We wish
to find and express every TRP channel in P. dumerilii, and study their biological properties
and role in thermotaxis and/or other processes. We wish to perform in vivo optogenetics and
Ca-imaging to identify neurons responsible for heat and cold sensation. In vitro experiments
should be conducted on expressed PduTRP channels to relate in vivo imaging with results
from behavioral assays. Furthermore we will investigate whether persistently changing environmental
factors (e.g. ocean acidification and effects of global warming) influence the sensory
transduction through the TRP channels and change the behavior of marine planktonic life
forms.