English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Poster

Evaluation and Optimization of MR-Based Attenuation Correction Methods in Combined Brain PET/MR

MPS-Authors
/persons/resource/persons84075

Mantlik,  F
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons83974

Hofmann,  M
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons83809

Bezrukov,  I
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons84193

Schölkopf,  B
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Mantlik, F., Hofmann, M., Bezrukov, I., Schmidt, H., Kolb, A., Beyer, T., et al. (2011). Evaluation and Optimization of MR-Based Attenuation Correction Methods in Combined Brain PET/MR. Poster presented at 2011 IEEE Nuclear Science Symposium, Medical Imaging Conference (NSS-MIC 2011), Valencia, Spain.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-B9BC-7
Abstract
Combined PET/MR provides simultaneous molecular and functional information in an anatomical context with unique soft tissue contrast. However, PET/MR does not support direct derivation of attenuation maps of objects and tissues within the measured PET field-of-view. Valid attenuation maps are required for quantitative PET imaging, specifically for scientific brain studies. Therefore, several methods have been proposed for MR-based attenuation correction (MR-AC). Last year, we performed an evaluation of different MR-AC methods, including simple MR thresholding, atlas- and machine learning-based MR-AC. CT-based AC served as gold standard reference. RoIs from 2 anatomic brain atlases with different levels of detail were used for evaluation of correction accuracy. We now extend our evaluation of different MR-AC methods by using an enlarged dataset of 23 patients from the integrated BrainPET/MR (Siemens Healthcare). Further, we analyze options for improving the MR-AC performance in terms of speed and accuracy. Finally, we assess the impact of ignoring BrainPET positioning aids during the course of MR-AC. This extended study confirms the overall prediction accuracy evaluation results of the first evaluation in a larger patient population. Removing datasets affected by metal artifacts from the Atlas-Patch database helped to improve prediction accuracy, although the size of the database was reduced by one half. Significant improvement in prediction speed can be gained at a cost of only slightly reduced accuracy, while further optimizations are still possible.