de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Cancelling biodynamic feedthrough requires a subject and task dependent approach

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84279

Venrooij,  J
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83839

Mulder M, van Paassen MM, Abbink DA, Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Venrooij, J., Mulder M, van Paassen MM, Abbink DA, Bülthoff, H., & Mulder, M. (2011). Cancelling biodynamic feedthrough requires a subject and task dependent approach. In IEEE International Conference on Systems, Man and Cybernetics (SMC 2011) (pp. 1670-1675). Piscataway, NJ, USA: IEEE.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-B9A2-0
Abstract
Vehicle accelerations may feed through the human body, causing involuntary limb motions which may lead to involuntary control inputs. This phenomenon is called biodynamic feedthrough (BDFT). Signal cancellation is a possible way of mitigating biodynamic feedthrough. It makes use of a BDFT model to estimate the involuntary control inputs. The BDFT effects are removed by subtracting the modeled estimate of the involuntary control input from the total control signal, containing both voluntary and involuntary components. The success of signal cancellation hinges on the accuracy of the BDFT model used. In this study the potential of signal cancellation is studied by making use of a method called optimal signal cancellation. Here, an identified BDFT model is used off-line to generate an estimate of the involuntary control inputs based on the accelerations present. Results show that reliable signal cancellation requires BDFT models that are both subject and task dependent. The task dependency is of particular importance: failing to adapt the model to changes in the operator's neuromuscular dynamics dramatically decreases the quality of cancellation and can even lead to an increase in unwanted effects. As a reliable and fast on-line identification method of the neuromuscular dynamics of the human operator currently does not exist, real-time signal cancellation is currently not feasible.