Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Cancelling biodynamic feedthrough requires a subject and task dependent approach

MPG-Autoren
/persons/resource/persons83839

Bülthoff,  HH
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Venrooij, J., Mulder, M., van Paassen, M., Abbink, D., Bülthoff, H., & Mulder, M. (2011). Cancelling biodynamic feedthrough requires a subject and task dependent approach. In IEEE International Conference on Systems, Man and Cybernetics (SMC 2011) (pp. 1670-1675). Piscataway, NJ, USA: IEEE.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-B9A2-0
Zusammenfassung
Vehicle accelerations may feed through the human body, causing involuntary limb motions which may lead to involuntary control inputs. This phenomenon is called biodynamic feedthrough (BDFT). Signal cancellation is a possible way of mitigating biodynamic feedthrough. It makes use of a BDFT model to estimate the involuntary control inputs. The BDFT effects are removed by subtracting the modeled estimate of the involuntary control input from the total control signal, containing both voluntary and involuntary components. The success of signal cancellation hinges on the accuracy of the BDFT model used. In this study the potential of signal cancellation is studied by making use of a method called optimal signal cancellation. Here, an identified BDFT model is used off-line to generate an estimate of the involuntary control inputs based on the accelerations present. Results show that reliable signal cancellation requires BDFT models that are both subject and task dependent. The task dependency is of particular importance: failing to adapt the model to changes in the operator's neuromuscular dynamics dramatically decreases the quality of cancellation and can even lead to an increase in unwanted effects. As a reliable and fast on-line identification method of the neuromuscular dynamics of the human operator currently does not exist, real-time signal cancellation is currently not feasible.