de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Modeling Wide-Frequency-Range Pilot Equalization for Control of Aircraft Pitch Dynamics

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84644

Pool,  DM
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Pool, D., Zaal PMT, Damveld HJ, van Paassen MM, Van der Vaart, J., & Mulder, M. (2011). Modeling Wide-Frequency-Range Pilot Equalization for Control of Aircraft Pitch Dynamics. Journal of Guidance, Control, and Dynamics, 34(5), 1529-1542. doi:10.2514/1.53315.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-B984-3
Abstract
In continuous manual control tasks, human controllers adapt their control strategy to the dynamics of the controlled element. This compensation for the controlled-element dynamics is performed around the pilot–vehicle system crossover frequency, in order to obtain satisfactory performance of the combined pilot–vehicle system, but is also seen to extend to frequencies well above crossover. For a controlled element representing the linearized pitch dynamics of a small conventional jet aircraft, an extension to the models for pilot equalization described in the literature was found to be needed for the modeling of the adopted pilot equalization dynamics over a wide frequency range. Measured pilot describing functions revealed that pilots use a combination of low-frequency lag and high-frequency lead equalization to compensate for the characteristics of these typical aircraft pitch dynamics around the short-period mode. An additional high-frequency lead term in the pilot equalization transfer function was found to allow for the modeling of these adopted equalization dynamics over a wide frequency range, thereby also yielding a significant increase in the percentage of measured control inputs that is explained by the pilot model. Furthermore, for this controlled element the extended model for the equalization dynamics was found to be important for the interpretation of the changes in pilot control behavior that occur due to the presence of physical motion feedback.