de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Dynamic visual information facilitates object recognition from novel viewpoints

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84252

Teramoto,  W
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84170

Riecke,  BE
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Teramoto, W., & Riecke, B. (2011). Dynamic visual information facilitates object recognition from novel viewpoints. Journal of Vision, 10(13:11), 1-13. doi:10.1167/10.13.11.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-B902-5
Abstract
Normally, people have difficulties recognizing objects from novel as compared to learned views, resulting in increased reaction times and errors. Recent studies showed, however, that this “view-dependency” can be reduced or even completely eliminated when novel views result from observer's movements instead of object movements. This observer movement benefit was previously attributed to extra-retinal (physical motion) cues. In two experiments, we demonstrate that dynamic visual information (that would normally accompany observer's movements) can provide a similar benefit and thus a potential alternative explanation. Participants performed sequential matching tasks for Shepard–Metzler-like objects presented via head-mounted display. As predicted by the literature, object recognition performance improved when view changes (45° or 90°) resulted from active observer movements around the object instead of object movements. Unexpectedly, however, merely providing dynamic visual information depicting the viewpoint change showed an equal benefit, despite the lack of any extra-retinal/physical self-motion cues. Moreover, visually simulated rotations of the table and hidden target object (table movement condition) yielded similar performance benefits as simulated viewpoint changes (scene movement condition). These findings challenge the prevailing notion that extra-retinal (physical motion) cues are required for facilitating object recognition from novel viewpoints, and highlight the importance of dynamic visual cues, which have previously received little attention.