Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Meeting Abstract

Combined whole-body PET/MR imaging: MR contrast agents do not affect the quantitative accuracy of PET following attenuation correction

MPG-Autoren
/persons/resource/persons83809

Bezrukov,  I.
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Lois, C., Kupferschläger, J., Bezrukov, I., Schmidt, H., Werner, M., Mannheim, J., et al. (2011). Combined whole-body PET/MR imaging: MR contrast agents do not affect the quantitative accuracy of PET following attenuation correction. In 97th Scientific Assemble and Annual Meeting of the Radiological Society of North America (RSNA 2011).


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-B8E8-F
Zusammenfassung
PURPOSE
Combined PET/MR imaging entails the use of MR contrast agents (MRCA) as part of integrated protocols. We assess additional attenuation of the PET emission signals in the presence of oral and intraveneous (iv) MRCA made up of iron oxide and Gd-chelates, respectively.
METHOD AND MATERIALS
Phantom scans were performed on a clinical PET/CT (Biograph HiRez16, Siemens) and integrated whole-body PET/MR (Biograph mMR, Siemens) using oral (Lumirem) and intraveneous (Gadovist) MRCA.
Reference PET attenuation values were determined on a small-animal PET (Inveon, Siemens) using standard PET transmission imaging (TX). Seven syringes of 5mL were filled with (a) Water, (b) Lumirem_100 (100 conc.), (c) Gadovist_100 (100), (d) Gadovist_18 (18), (e) Gadovist_02 (0.2), (f) Imeron-400 CT iv-contrast (100) and (g) Imeron-400 (2.4). The same set of syringes was scanned on CT (Sensation16, Siemens) at 120kVp and 160mAs.
The effect of MRCA on the attenuation of PET emission data was evaluated using a 20cm cylinder filled uniformly with [18F]-FDG (FDG) in water (BGD). Three 4.5cm diameter cylinders were inserted into the phantom: (C1) Teflon, (C2) Water+FDG (2:1) and (C3) Lumirem_100+FDG (2:1). Two 50mL syringes filled with Gadovist_02+FDG (Sy1) and water+FDG (Sy2) were attached to the sides of (C1) to mimick the effects of iv-contrast in vessels near bone. Syringe-to-background activity ratio was 4-to-1. PET emission data were acquired for 10min each using the PET/CT and the PET/MR. Images were reconstructed using CT- and MR-based attenuation correction.
RESULTS
Mean linear PET attenuation (cm-1) on TX was (a) 0.098, (b) 0.098, (c) 0.300, (d) 0.134, (e) 0.095, (f) 0.397 and (g) 0.105. Corresponding CT attenuation (HU) was: (a) 5, (b) 14, (c) 3070, (d) 1040, (e) 13, (f) 3070 and (g) 347.
Lumirem had little effect on PET attenuation with (C3) being 13 and 10 higher than (C2) on PET/CT and PET/MR, respectively. Gadovist_02 had even smaller effects with (Sy1) being 2.5 lower than (Sy2) on PET/CT and 1.2 higher than (Sy2) on PET/MR.
CONCLUSION
MRCA in high and clinically relevant concentrations have attenuation values similar to that of CT contrast and water, respectively. In clinical PET/MR scenarios MRCA are not expected to lead to significant attenuation of the PET emission signals.