de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

On the discardability of data in Support Vector Classification problems

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83886

Varagnolo D, Dinuzzo,  F
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Del Favero, S., Varagnolo D, Dinuzzo, F., Schenato, L., & Pillonetto, G. (2011). On the discardability of data in Support Vector Classification problems. In 50th IEEE Conference on Decision and Control and European Control Conference (CDC - ECC 2011) (pp. 3210-3215). Piscataway, NJ, USA: IEEE.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-B8DA-F
Zusammenfassung
We analyze the problem of data sets reduction for support vector classification. The work is also motivated by distributed problems, where sensors collect binary measurements at different locations moving inside an environment that needs to be divided into a collection of regions labeled in two different ways. The scope is to let each agent retain and exchange only those measurements that are mostly informative for the collective reconstruction of the decision boundary. For the case of separable classes, we provide the exact conditions and an efficient algorithm to determine if an element in the training set can become a support vector when new data arrive. The analysis is then extended to the non-separable case deriving a sufficient discardability condition and a general data selection scheme for classification. Numerical experiments relative to the distributed problem show that the proposed procedure allows the agents to exchange a small amount of the collected data to obtain a highly predictive decision boundary.