de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Falsification and future performance

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83792

Balduzzi,  D
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Balduzzi, D. (2011). Falsification and future performance. In Solomonoff 85th Memorial Conference (pp. 1-13). Berlin, Germany: Springer.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-B8D6-8
Zusammenfassung
We information-theoretically reformulate two measures of capacity from statistical learning theory: empirical VC-entropy and empirical Rademacher complexity. We show these capacity measures count the number of hypotheses about a dataset that a learning algorithm falsies when it nds the classier in its repertoire minimizing empirical risk. It then follows from that the future performance of predictors on unseen data is controlled in part by how many hypotheses the learner falsies. As a corollary we show that empirical VC-entropy quanties the message length of the true hypothesis in the optimal code of a particular probability distribution, the so-called actual repertoire.