de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Realignment strategies for awake-monkey fMRI data

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84239

Stoewer,  S
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83937

Goense,  J
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84007

Keliris,  GA
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83797

Bartels,  A
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84063

Logothetis,  NK
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84222

Sigala,  N
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Stoewer, S., Goense, J., Keliris, G., Bartels, A., Logothetis, N., Duncan, J., et al. (2011). Realignment strategies for awake-monkey fMRI data. Magnetic Resonance Imaging, 29(10), 1390-1400. doi:10.1016/j.mri.2011.05.003.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-B8C6-C
Abstract
Functional magnetic resonance imaging (fMRI) experiments with awake nonhuman primates (NHPs) have recently seen a surge of applications. However, the standard fMRI analysis tools designed for human experiments are not optimal for NHP data collected at high fields. One major difference is the experimental setup. Although real head movement is impossible for NHPs, MRI image series often contain visible motion artifacts. Animal body movement results in image position changes and geometric distortions. Since conventional realignment methods are not appropriate to address such differences, algorithms tailored specifically for animal scanning become essential. We have implemented a series of high-field NHP specific methods in a software toolbox, fMRI Sandbox (http://kyb.tuebingen.mpg.de/~stoewer/), which allows us to use different realignment strategies. Here we demonstrate the effect of different realignment strategies on the analysis of awake-monkey fMRI data acquired at high field (7 T). We show that the advantage of using a nonstandard realignment algorithm depends on the amount of distortion in the dataset. While the benefits for less distorted datasets are minor, the improvement of statistical maps for heavily distorted datasets is significant.