de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

esfMRI of the upper STS: further evidence for the lack of electrically induced polysynaptic propagation of activity in the neocortex

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83787

Augath,  M
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84099

Murayama,  Y
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84260

Tolias,  AS
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84063

Logothetis,  NK
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Sultan, F., Augath, M., Murayama, Y., Tolias, A., & Logothetis, N. (2011). esfMRI of the upper STS: further evidence for the lack of electrically induced polysynaptic propagation of activity in the neocortex. Magnetic Resonance Imaging, 29(10), 1374-1381. doi:10.1016/j.mri.2011.04.005.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-B8B8-C
Abstract
Combining electrical stimulation with fMRI (esfMRI) has proven to be an important tool to study the global effects of electrical stimulation on neural networks in the brain. Here we extend our previous studies to stimulating the upper superior temporal sulcus (STS) in the anesthetized monkey. Our results show that stimulating area V5/MT and surrounding areas leads to positive BOLD responses in the majority of cortical areas known to receive direct/monosynaptic connections from the stimulation site. We confirm our previous results from stimulating primary visual cortex that the propagation of electrically induced activity is limited in its transsynaptic propagation to the first synapse also for extrastriate areas.