Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

esfMRI of the upper STS: further evidence for the lack of electrically induced polysynaptic propagation of activity in the neocortex

MPG-Autoren
/persons/resource/persons83787

Augath,  M
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84099

Murayama,  Y
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84063

Logothetis,  NK
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Sultan, F., Augath, M., Murayama, Y., Tolias, A., & Logothetis, N. (2011). esfMRI of the upper STS: further evidence for the lack of electrically induced polysynaptic propagation of activity in the neocortex. Magnetic Resonance Imaging, 29(10), 1374-1381.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-B8B8-C
Zusammenfassung
Combining electrical stimulation with fMRI (esfMRI) has proven to be an important tool to study the global effects of electrical stimulation on neural networks in the brain. Here we extend our previous studies to stimulating the upper superior temporal sulcus (STS) in the anesthetized monkey. Our results show that stimulating area V5/MT and surrounding areas leads to positive BOLD responses in the majority of cortical areas known to receive direct/monosynaptic connections from the stimulation site. We confirm our previous results from stimulating primary visual cortex that the propagation of electrically induced activity is limited in its transsynaptic propagation to the first synapse also for extrastriate areas.