Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Phase transition in the family of p-resistances

MPG-Autoren
/persons/resource/persons83779

Alamgir,  M
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons76237

von Luxburg,  U
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Alamgir, M., & von Luxburg, U. (2012). Phase transition in the family of p-resistances. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, & K. Weinberger (Eds.), Advances in Neural Information Processing Systems 24 (pp. 379-387). Red Hook, NY, USA: Curran.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-B888-5
Zusammenfassung
We study the family of p-resistances on graphs for p ≥ 1. This family generalizes the standard resistance distance. We prove that for any fixed graph, for p=1, the p-resistance coincides with the shortest path distance, for p=2 it coincides with the standard resistance distance, and for p → ∞ it converges to the inverse of the minimal s-t-cut in the graph. Secondly, we consider the special case of random geometric graphs (such as k-nearest neighbor graphs) when the number n of vertices in the graph tends to infinity. We prove that an interesting phase-transition takes place. There exist two critical thresholds p^* and p^** such that if p < p^*, then the p-resistance depends on meaningful global properties of the graph, whereas if p > p^**, it only depends on trivial local quantities and does not convey any useful information. We can explicitly compute the critical values: p^* = 1 + 1/(d-1) and p^** = 1 + 1/(d-2) where d is the dimension of the underlying space (we believe that the fact that there is a small gap between p^* and p^** is an artifact of our proofs. We also relate our findings to Laplacian regularization and suggest to use q-Laplacians as regularizers, where q satisfies 1/p^* + 1/q = 1.