de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Empirical models of spiking in neural populations

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84066

Macke,  JH
Research Group Computational Vision and Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Macke, J., Büsing L, Cunningham JP, Yu BM, Shenoy, K., & Sahani, M. (2012). Empirical models of spiking in neural populations. In Advances in Neural Information Processing Systems 24 (pp. 1350-1358). Red Hook, NY, USA: Curran.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-B878-9
Abstract
Neurons in the neocortex code and compute as part of a locally interconnected population. Large-scale multi-electrode recording makes it possible to access these population processes empirically by fitting statistical models to unaveraged data. What statistical structure best describes the concurrent spiking of cells within a local network? We argue that in the cortex, where firing exhibits extensive correlations in both time and space and where a typical sample of neurons still reflects only a very small fraction of the local population, the most appropriate model captures shared variability by a low-dimensional latent process evolving with smooth dynamics, rather than by putative direct coupling. We test this claim by comparing a latent dynamical model with realistic spiking observations to coupled generalised linear spike-response models (GLMs) using cortical recordings. We find that the latent dynamical approach outperforms the GLM in terms of goodness-offit, and reproduces the temporal correlations in the data more accurately. We also compare models whose observations models are either derived from a Gaussian or point-process models, finding that the non-Gaussian model provides slightly better goodness-of-fit and more realistic population spike counts.