de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Wavelet packet energy, Tsallis entropy and statistical parameterization for support vector-based and neural-based classification of mammographic regions

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84847

Ramirez-Villegas,  JF
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Ramirez-Villegas, J. (2012). Wavelet packet energy, Tsallis entropy and statistical parameterization for support vector-based and neural-based classification of mammographic regions. Neurocomputing, 77(1), 82–100. doi:10.1016/j.neucom.2011.08.015.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-B83A-6
Abstract
This work develops a support vector and neural-based classification of mammographic regions by applying statistical, wavelet packet energy and Tsallis entropy parameterization. From the first four wavelet packet decomposition levels, four different feature sets were evaluated using two-sample Kolmogorov–Smirnov test (KS-test) and, in one case, principal component analysis (PCA). Feature selection was performed applying a hybrid scheme integrating non-parametric KS-test, correlation analysis, a logistic regression (LR) model and sequential forward selection (SFS). The top selected features (depending on the selected wavelet decomposition level) produced the best classification performances in comparison to other well-known feature selection methods. The classification of the data was carried out using several support vector machine (SVM) schemes and multi-layer perceptron (MLP) neural networks. The new set of features improved significantly the classification performance of mammographic regions using conventional SVMs and MLPs.