Hilfe Wegweiser Impressum Kontakt Einloggen





Hierarchical Relative Entropy Policy Search


Peters,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar

Daniel, C., Neumann, G., & Peters, J. (2012). Hierarchical Relative Entropy Policy Search. In JMLR Workshop and Conference Proceedings Volume 22: AISTATS 2012 (pp. 273-281). Cambridge, MA, USA: JMLR.

Many real-world problems are inherently hi- erarchically structured. The use of this struc- ture in an agent's policy may well be the key to improved scalability and higher per- formance. However, such hierarchical struc- tures cannot be exploited by current policy search algorithms. We will concentrate on a basic, but highly relevant hierarchy - the 'mixed option' policy. Here, a gating network first decides which of the options to execute and, subsequently, the option-policy deter- mines the action. In this paper, we reformulate learning a hi- erarchical policy as a latent variable estima- tion problem and subsequently extend the Relative Entropy Policy Search (REPS) to the latent variable case. We show that our Hierarchical REPS can learn versatile solu- tions while also showing an increased perfor- mance in terms of learning speed and quality of the found policy in comparison to the non- hierarchical approach.