de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Steady-state responses in MEG demonstrate information integration within but not across the auditory and visual senses

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83933

Giani,  AS
Research Group Cognitive Neuroimaging, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group Cognitive Neuroimaging, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84016

Ortiz EB, Belardinelli P, Kleiner,  M
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84112

Noppeney,  U
Research Group Cognitive Neuroimaging, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Giani, A., Ortiz EB, Belardinelli P, Kleiner, M., Preissl, H., & Noppeney, U. (2012). Steady-state responses in MEG demonstrate information integration within but not across the auditory and visual senses. NeuroImage, 60(2), 1478–1489. doi:10.1016/j.neuroimage.2012.01.114.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-B7DC-4
Zusammenfassung
To form a unified percept of our environment, the human brain integrates information within and across the senses. This MEG study investigated interactions within and between sensory modalities using a frequency analysis of steady-state responses that are elicited time-locked to periodically modulated stimuli. Critically, in the frequency domain, interactions between sensory signals are indexed by crossmodulation terms (i.e. the sums and differences of the fundamental frequencies). The 3x2 factorial design, manipulated (1) modality: auditory, visual or audiovisual (2) steady-state modulation: the auditory and visual signals were modulated only in one sensory feature (e.g. visual gratings modulated in luminance at 6 Hz) or in two features (e.g. tones modulated in frequency at 40 Hz amplitude at 0.2 Hz). This design enabled us to investigate crossmodulation frequencies that are elicited when two stimulus features are modulated concurrently (i) in one sensory modality or (ii) in auditory and visual modalities. In support of within-modality integration, we reliably identified crossmodulation frequencies when two stimulus features in one sensory modality were modulated at different frequencies. In contrast, no crossmodulation frequencies were identified when information needed to be combined from auditory and visual modalities. The absence of audiovisual crossmodulation frequencies suggests that the previously reported audiovisual interactions in primary sensory areas may mediate low level spatiotemporal coincidence detection that is prominent for stimulus transients but less relevant for sustained SSR responses. In conclusion, our results indicate that information in SSRs is integrated over multiple time scales within but not across sensory modalities at the primary cortical level.