de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

ShapePheno: Unsupervised extraction of shape phenotypes from biological image collections

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84856

Karaletsos,  T
Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84969

Stegle,  O
Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons85260

Dreyer,  C
Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons75313

Borgwardt,  KM
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Karaletsos, T., Stegle, O., Dreyer, C., Winn, J., & Borgwardt, K. (2012). ShapePheno: Unsupervised extraction of shape phenotypes from biological image collections. Bioinformatics, 28(7), 1001-1008. doi:10.1093/bioinformatics/bts081.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-B7D8-C
Zusammenfassung
Motivation: Accurate large-scale phenotyping has recently gained considerable importance in biology. For example, in genome wide association studies technological advances have rendered genotyping cheap, leaving phenotype acquisition as the major bottleneck. Automatic image analysis is one major strategy to phenotype individuals in large numbers. Current approaches for visual phenotyping focus predominantly on summarizing statistics and geometric measures, such as height and width of an individual, or color histograms and patterns. However, more subtle, but biologically informative phenotypes, such as the local deformation of the shape of an individual with respect to the population mean cannot be automatically extracted and quantified by current techniques. Results: We propose a probabilistic machine learning model that allows for the extraction of deformation phenotypes from biological images, making them available as quantitative traits for downstream analysis. Our approach jointly models a collection of images using a learned common template that is mapped onto each image through a deformable smooth transformation. In a case study we analyze the shape deformations of 388 guppy fish (Poecilia reticulata). We find that the flexible shape phenotypes our model extracts are complementary to basic geometric measures. Moreover, these quantitative traits assort the observations into distinct groups and can be mapped to polymorphic genetic loci of the sample set.