de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Learning Tracking Control with Forward Models

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83817

Bócsi,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84387

Hennig,  P
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83869

Csató,  L
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Dept. Empirical Inference, Max Planck Institute for Intelligent System, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84135

Peters,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bócsi, B., Hennig, P., Csató, L., & Peters, J. (2012). Learning Tracking Control with Forward Models. In IEEE International Conference on Robotics and Automation (ICRA 2012) (pp. 259-264). Piscataway, NJ, USA: IEEE.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-B782-A
Zusammenfassung
Performing task-space tracking control on redundant robot manipulators is a difficult problem. When the physical model of the robot is too complex or not available, standard methods fail and machine learning algorithms can have advantages. We propose an adaptive learning algorithm for tracking control of underactuated or non-rigid robots where the physical model of the robot is unavailable. The control method is based on the fact that forward models are relatively straightforward to learn and local inversions can be obtained via local optimization. We use sparse online Gaussian process inference to obtain a flexible probabilistic forward model and second order optimization to find the inverse mapping. Physical experiments indicate that this approach can outperform state-of-the-art tracking control algorithms in this context.