de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

3-D Mutual Localization with Anonymous Bearing Measurements

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83863

Cognetti,  M
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83915

Stegagno P, Franchi,  A
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Cognetti, M., Stegagno P, Franchi, A., Oriolo, G., & Bülthoff, H. (2012). 3-D Mutual Localization with Anonymous Bearing Measurements. In IEEE International Conference on Robotics and Automation (ICRA 2012) (pp. 791-798). Piscataway, NJ, USA: IEEE.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-B778-2
Zusammenfassung
We present a decentralized algorithm for estimating mutual 3-D poses in a group of mobile robots, such as a team of UAVs. Our algorithm uses bearing measurements reconstructed, e.g., by a visual sensor, and inertial measurements coming from the robot IMU. Since identification of a specific robot in a group would require visual tagging and may be cumbersome in practice, we simply assume that the bearing measurements are anonymous. The proposed localization method is a non-trivial extension of our previous algorithm for the 2-D case [1], and exhibits similar performance and robustness. An experimental validation of the algorithm has been performed using quadrotor UAVs.