de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Enabling global processing in simultanagnosia by psychophysical biasing of visual pathways

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83984

Kveraga K, Huberle,  E
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Thomas, C., Kveraga K, Huberle, E., Karnath, H.-O., & Bar, M. (2012). Enabling global processing in simultanagnosia by psychophysical biasing of visual pathways. Brain, 135(5), 1578-1585. doi:10.1093/brain/aws066.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-B75C-2
Abstract
A fundamental aspect of visual cognition is our disposition to see the ‘forest before the trees’. However, damage to the posterior parietal cortex, a critical brain region along the dorsal visual pathway, can produce a neurological disorder called simultanagnosia, characterized by a debilitating inability to perceive the ‘forest’ but not the ‘trees’ (i.e. impaired global processing despite intact local processing). This impairment in perceiving the global shape persists even though the ventral visual pathway, the primary recognition pathway, is intact in these patients. Here, we enabled global processing in patients with simultanagnosia using a psychophysical technique, which allowed us to bias stimuli such that they are processed predominantly by the intact ventral visual pathway. Our findings reveal that the impairment in global processing that characterizes simultanagnosia stems from a disruption in the processing of low-spatial frequencies through the dorsal pathway. These findings advance our understanding of the relationship between visuospatial attention and perception and reveal the neural mechanism mediating the disposition to see the ‘forest before the trees’.