de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Rigidity Maintenance Control for Multi-Robot Systems

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83915

Franchi,  A
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83839

Allgöwer P, Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84174

Robuffo Giordano,  P
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zelazo, D., Franchi, A., Allgöwer P, Bülthoff, H., & Robuffo Giordano, P. (2012). Rigidity Maintenance Control for Multi-Robot Systems. In Robotics: Science and Systems VIII (pp. 1-8).


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-B6CC-E
Zusammenfassung
Rigidity of formations in multi-robot systems is important for formation control, localization, and sensor fusion. This work proposes a rigidity maintenance gradient controller for a multi-agent robot team. To develop such a controller, we first provide an alternative characterization of the rigidity matrix and use that to introduce the novel concept of the rigidity eigenvalue. We provide a necessary and sufficient condition relating the positivity of the rigidity eigenvalue to the rigidity of the formation. The rigidity maintenance controller is based on the gradient of the rigidity eigenvalue with respect to each robot position. This gradient has a naturally distributed structure, and is thus amenable to a distributed implementation. Additional requirements such as obstacle and inter-agent collision avoidance, as well as typical constraints such as limited sensing/communication ranges and line-of-sight occlusions, are also explicitly considered. Finally, we present a simulation with a group of seven quadrotor UAVs to demonstrate and validate the theoretical results.