de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Quasi-Newton Methods: A New Direction

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84387

Hennig,  P
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84384

Kiefel,  M
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

Externe Ressourcen
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hennig, P., & Kiefel, M. (2012). Quasi-Newton Methods: A New Direction. In J. Langford, & J. Pineau (Eds.), 29th International Conference on Machine Learning (ICML 2012) (pp. 25-32). Madison, WI, USA: International Machine Learning Society.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-B6CA-1
Zusammenfassung
Four decades after their invention, quasi- Newton methods are still state of the art in unconstrained numerical optimization. Although not usually interpreted thus, these are learning algorithms that t a local quadratic approximation to the objective function. We show that many, including the most popular, quasi-Newton methods can be interpreted as approximations of Bayesian linear regression under varying prior assumptions. This new notion elucidates some shortcomings of classical algorithms, and lights the way to a novel nonparametric quasi-Newton method, which is able to make more ecient use of available information at computational cost similar to its predecessors.