Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Influence Maximization in Continuous Time Diffusion Networks

MPG-Autoren
/persons/resource/persons75510

Gomez Rodriguez,  M
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons84193

Schölkopf,  B
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Gomez Rodriguez, M., & Schölkopf, B. (2012). Influence Maximization in Continuous Time Diffusion Networks. In J. Langford, & J. Pineau (Eds.), 29th International Conference on Machine Learning (ICML 2012) (pp. 313-320). Madison, WI, USA: International Machine Learning Society.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-B6C4-D
Zusammenfassung
The problem of finding the optimal set of source nodes in a diffusion network that maximizes the spread of information, influence, and diseases in a limited amount of time depends dramatically on the underlying temporal dynamics of the network. However, this still remains largely unexplored to date. To this end, given a network and its temporal dynamics, we first describe how continuous time Markov chains allow us to analytically compute the average total number of nodes reached by a diffusion process starting in a set of source nodes. We then show that selecting the set of most influential source nodes in the continuous time influence maximization problem is NP-hard and develop an efficient approximation algorithm with provable near-optimal performance. Experiments on synthetic and real diffusion networks show that our algorithm outperforms other state of the art algorithms by at least ~20 and is robust across different network topologies.