de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Vortrag

How are facial expressions represented in the human brain?

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84201

Schultz,  J
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83911

Fernandez Cruz,  AL
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83877

de la Rosa,  S
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84005

Kaulard,  K
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Schultz, J., Fernandez Cruz, A., de la Rosa, S., Bülthoff, H., & Kaulard, K. (2012). How are facial expressions represented in the human brain?. Talk presented at 35th European Conference on Visual Perception. Alghero, Italy.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-B65C-C
Zusammenfassung
The dynamic facial expressions that we encounter every day can carry a myriad of social signals. What are the neural mechanisms allowing us to decode these signals? A useful basis for this decoding could be representations in which the facial expressions are set in relation to each other. Here, we compared the behavioral and neural representations of 12 facial expressions presented as pictures and videos. Behavioral representations of these expressions were computed based on the results of a semantic differential task. Neural representations of these expressions were obtained by multivariate pattern analysis of functional magnetic imaging data. The two kinds of representations were compared using correlations. For expression videos, the results show a significant correlation between the behavioral and neural representations in the superior temporal sulcus (STS), the fusiform face area, the occipital face area and the amygdala, all in the left hemisphere. For expression pictures, a significant correlation was found only in the left STS. These results suggest that of all tested regions, the left STS contains the neural representation of facial expressions that is closest to their behavioral representation. This confirms the predominant role of STS in coding changeable aspects of faces, which includes expressions.